If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2-8z-6=0
a = 3; b = -8; c = -6;
Δ = b2-4ac
Δ = -82-4·3·(-6)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{34}}{2*3}=\frac{8-2\sqrt{34}}{6} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{34}}{2*3}=\frac{8+2\sqrt{34}}{6} $
| d/20+d/12=1180 | | −34=x+42−5x | | 3n+7=16{1,3,5} | | 9x-17=-17x+9x | | 6(x-2)/3=2(x+7)/10 | | 5c−8≤2c+10=c | | 3x+1=5x+-6 | | y+(-14)=-12 | | -17=a/14 | | x-2(x-3)+3(x-4)=4(5-x)+10 | | 1.19x=12 | | 4y=9y-25 | | 2x+2=0x+1 | | 4(y+1)+5=6(y-1)y | | -2(5n-4)=68 | | 10-x3=+4 | | x-2=-3x-3 | | 6(n+5)=8-2(4n+3) | | u-2=-9 | | b+(-16)=-9 | | x/12+600+x/8=720 | | 7g^2+g-8=0 | | 5s+20=100 | | 3(j−16)=3 | | 39+y=46 | | 5x-14+x+26=180 | | 6y+28=-2(y-2) | | 3x+12+4x=40 | | x+5.9=-1.7$. | | X/2+x/2+2x=180 | | -24r+42=181 | | 10x-50=9x=45 |